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Abstract. This paper describes Syntony, an Eclipse-based framework
that we developed for automated and tool-assisted development and
analysis of network protocols. With the help of Syntony, we are able to
use a simple graphical modeling language to describe complex protocols.
In particular, we use UML 2 diagrams to construct simulation models
to be executed in an event-driven simulation framework (currently, we
are using OMNeT++). The translation of the UML 2 models is directly
provided by Syntony. In addition to the use of standardized graphical
modeling languages for developing and evaluating simulation models,
the complete process of debugging and analyzing the protocol is tool-
assisted. For verification purposes, we developed an UML 2 model of the
communications within the AKTIV project Cooperative Cars (CoCar).
We were able to demonstrate that Syntony can be used to generate ex-
ecutable simulation code and derive useful performance measures.

1 Introduction

Due to the complexity of today’s networks, simulation is a widely used mech-
anism to evaluate the performance of new protocols or network configurations.
However, the resulting simulation models are also very complex, often unclear or
lacking documentation, and in most cases too complicated to be understandable
at a glance. This leads not only to difficulties while debugging and maintaining
the developed simulation models. The exchange of simulation models between
research groups, and possibly between different simulators, is also hampered.

Fortunately, improved modeling techniques are available since several years.
These techniques often include graphical mechanisms that enable humans to
quickly understand the structure and behavior of the modeled system.

The Unified Modeling Language (UML) is such a graphical modeling lan-
guage and is standardized by the Object Management Group (OMG). The cur-
rent version of the standard is 2.1.1 [20]. A variety of academic and commercial
tools exist that support model development with UML diagrams. To support
the exchange and automated processing of UML diagrams, an alternate textual
format called XML Metadata Interchange (XMI) has also been defined by the
OMG.



Using the UML as a modeling language in the context of network simulation
has several advantages compared to other available languages. The graphical
representation of the main model elements and the enforcement of a modern,
object-oriented approach to the modeling of systems make complex models far
easier to comprehend. This also leads to the earlier discovery of conceptual errors
in the model, accelerates model debugging and helps to locate errors sooner. In
addition, the UML is very popular, easy to learn, and knowledge about it is
already widely spread. Therefore, there is no need for another new programming
language – and, in our case, there is no need to learn the internals of another
new network simulator. And, of course, graphical programming is “en vogue”
right now (and has been for the last years), which might increase the acceptance
level among model developers.

For these reasons, we believe that the automated simulation of UML models
is a very promising approach especially in the field of network simulation. This
also takes UML one step further from a purely graphical formalism. The fact
that the models remain machine-readable by means of the exchange format XMI
leads to the applicability of UML for all kinds of model transformations. We
expect that the development of new network protocols and the evaluation of their
performance can be accelerated significantly with the adoption of the UML as
the basis for network simulations. Therefore, we are developing an Eclipse-based
tool that we named Syntony, which is capable of transforming UML models into
executable simulation code.

Syntony is currently able to process standard-compliant UML models con-
sisting of composite structure, state machine and activity diagrams. Performance
annotations using the UML profile for QoS and Fault Tolerance Characteristics
and Mechanisms, as well as some custom stereotypes are also possible.

To show the applicability and usage of Syntony, we developed a UML model
of communications within the AKTIV project CoCar [2] and used Syntony to
automatically generate an executable simulation model from it.

The remainder of this paper is organized as follows. After a brief overview of
related work in Section 2, we show how computer networks can be modeled with
the UML in Section 3. Section 4 discusses the inner workings of Syntony and
details the transformation process from UML to simulation code. In Section 5,
we present a case study using the CoCar scenario. Finally, Section 6 concludes
the paper and gives some directions for future research.

2 Related work

Recently, a number of approaches have been published that use UML models
to analyze the performance of software architectures. In most cases, UML mod-
els are not transformed into simulation, but into other mechanisms suitable for
performance analysis, for example Petri nets, queuing networks, process alge-
bras, or stochastic processes. Balsamo et al. [4] give a broad overview of some
of the existing approaches. In their work, they mention two simulation-based



approaches, namely work by Arief and Speirs [3] and by De Miguel et al. [9].
Both approaches are included in the discussion below.

Of course, UML models have also been used as the basis for simulation stud-
ies. One of the earliest works in this area was done by Pooley et al. [14,21]. They
use early versions of the UML 1 to generate discrete-event simulations from se-
quence diagrams. However, they maintain that state and activity diagrams are
more suitable for system specification because sequence diagrams only capture
specific message flows, but not all possible and legal message exchanges. They
conclude that sequence diagrams are better suited for the animation of a sim-
ulation behavior than its specification. Arief and Speirs [3] transform systems
specified with class and sequence diagrams into C++ or Java simulation code
using a framework called SimML. Borshchev et al. [7] describe an approach that
uses UML 1 state machines and composite structure diagrams, and annotations
taken from the unofficial profile UML for Real-Time. From these models, they
generate simulation programs in Java. They implemented their approach in the
commercial tool AnyLogic. De Miguel et al. [9] define a set of custom stereo-
types and tagged values to support the modeling of performance parameters.
They specify systems using class, deployment and activity diagrams and anno-
tate them with their custom profile. Their Simulation Model Generator (SMG) is
able to transform these UML models into simulation models for the commercial
simulator OPNET. Marzolla and Balsamo [5, 15, 16] use activity, use case, and
deployment diagrams to specify systems and annotate performance aspects with
the UML profile for schedulability, performance, and time (SPT). These mod-
els are transformed into code for a custom, process-oriented C++ simulator.
Barth [6] uses activity and class diagrams to describe a system. Performance
aspects are included from an external library and thus not modeled in UML.
The system can be analyzed with a Java simulator. Michael et al. [17] developed
a mapping of UML-RT models to the simulator OMNeT++. They specify the
system using composite structure and state machine diagrams. Application re-
quirements are specified with sequence diagrams which are generated from use
cases. De Wet and Kritzinger [10] transform UML 2.0 models to Specification and
Description Language (SDL) using the ITU Z.109 [13] profile. The ITU Z.109
profile defines a subset of the UML 2.0 and how the elements are mapped to
SDL specifications. Existing methods for the incorporation of temporal aspects
into SDL specifications are then used to analyze the model with process-oriented
simulation. Choi et al. [8] use class and sequence diagrams to model systems. The
sequence diagrams are then transformed into state machines. A discrete-event
simulation model is generated from the classes and state machines. However, it
is unclear how performance elements are integrated into this approach.

The main differences between Syntony and the related work discussed above
are that our approach is fully compliant to the UML 2 standard, uses a set of
diagrams that is particularly suitable for the modeling of network protocols (but
also for most other applications), is built on widely known simulation tools and
uses standardized UML profiles to annotate performance parameters.



3 Modeling systems and networks with UML 2

The UML offers a multitude of modeling elements and diagram types which can
be used to model the structure and the behavior of systems. As the diagram
types are partly redundant, a subset of the diagram types should be sufficient
to model all relevant aspects of a system. The description of the system struc-
ture basically comprises the problem of which system elements there are, and
how these elements are connected with each other. The possibilities to model
system structure include a combination of component and deployment diagrams
as in [11], or composite structure diagrams as in [7].

We decided to describe the system structure with composite structure dia-
grams. These diagrams can be used to display the internal structure of classes.
This includes how other classes are nested inside a class, and how the nested
classes can communicate via connectors attached to their ports.

The behavior of the entire system is determined by the functional operation
of each system element, and the communication between the elements. There are
three main options to model system behavior with UML 2 which have already
been used in the literature. Activity diagrams are employed for example in [15]
and [9], sequence diagrams in [3] and [8], and state machine diagrams in [7].

We chose to model the system behavior with state machine diagrams. UML
state machines are very rich in features, which enables the modeler to produce
very clearly structured, uncluttered models. At this point, there are two levels of
detail to choose from. The less detailed variant is to annotate all transitions with
transition probabilities. These probabilities can either come from measurements
of an existing system, or from estimations. The detailed variant requires a com-
plete specification of all transition effects and state actions (entry, do, exit). We
use activity diagrams for their description. In this paper, we will only describe
the second approach in detail.

The UML standard does not describe methods to model non-functional prop-
erties such as performance aspects of systems. However, UML profiles are defined
as a flexible extension mechanism that can be used for this purpose. The OMG is
currently in the process of standardizing a profile called Modeling and Analysis
of Real-Time and Embedded Systems (MARTE) that will be suitable for the
modeling of performance aspects. As the standardization is not yet finished, we
had to rely on a combination of preliminary versions and own profile elements
in this paper.

We defined a custom profile with three stereotypes. <<simulationModule>>
can be used to reference existing simulation models in the UML model. Ele-
ments that are stereotyped as <<simulationParameter>> can be varied with-
out recompiling the simulation, and can also be subject to systematical variation
within given bounds. The stereotype <<incrementStatistic>> realizes a simple
statistical counter.

The elements described above are sufficient to model arbitrary systems and
networks. In particular with the multitude of UML 2 actions available for use in
activity diagrams, it is assured that any behavior can be modeled using UML
alone. However, this would become quite cumbersome as soon as the modeled



algorithms reach a certain complexity. It is therefore desirable to allow the usage
of code in a textual programming language at least at certain places in a model.
Appropriate UML elements for this are easily identified: OpaqueActions and
OpaqueBehaviors allow the specification of a textual body and a corresponding
language. We decided to support two different languages: the native language of
the underlying simulation core (we are currently using C++), and the Object
Action Language (OAL) [1] as a convenience language building on the UML
action semantics standard [19]. OAL facilitates for example the specification of
message sending and timer generation.

4 Syntony

We are developing the tool Syntony to enable simplified, flexible, and statistically
sound simulation of models specified in the UML modeling language. As its input
Syntony uses UML models as described in the previous section. The tool then
analyzes the model, transforms it, and outputs a simulation model specified in
C++ as is required by the used simulation core OMNeT++ [22]. The details of
this process will be described in this section.

4.1 Basic concepts

Syntony is a software tool written in Java as a plug-in for the popular open
source development environment Eclipse1. As such, its graphical user interface
is realized as a set of Eclipse views. The input models have to be available
in the XMI format as supported by the Eclipse UML 2 plug-in. Computer-
Aided Software Engineering (CASE) tools able to export UML models into this
format include for example the IBM Rational Software Modeler2, Sparx Systems
Enterprise Architect3, and Omondo EclipseUML4.

After the import of a particular UML model, Syntony transforms the model
into C++ code. This transformation is described in detail below. The code is
then compiled into a simulation program and executed. Apart from the initial
import, these steps may be executed automatically. The execution of these steps
is controlled from the Tool Control element of the graphical user interface (see
Figure 1).

Another element of the user interface is the Translation View as depicted in
Figure 2, which illustrates the structure of the input model and annotates error
and warning messages generated during the transformation process.

4.2 OMNeT++

We currently rely on OMNeT++ [22] as the underlying simulation core. OM-
NeT++ is based on C++ and was designed to support efficient network simula-
1 http://www.eclipse.org/
2 http://www.ibm.com/software/awdtools/modeler/swmodeler
3 http://www.sparxsystems.com.au/
4 http://www.omondo.com/



Fig. 1. Tool control view Fig. 2. Translation results view

tion. OMNeT++ distinguishes two kinds of classes, complex and simple modules.
Classes that are composed of other classes, plus connections between them, are
called complex modules. They are specified in the network description language
(NED). Atomic classes with an associated behavior are called simple modules.
They are written in C++, and are accompanied by a short NED description
of their configuration parameters and interfaces, called gates, available for this
class.

4.3 Transformation of UML model elements

Based on the above description of the OMNeT++ way of building simulations,
it is quite clear how the main UML model elements correspond to OMNeT++
concepts. Classes with state machine diagrams become simple modules. Classes
with composite structure diagrams are transformed into complex modules. UML
ports are represented by a very similar construct in OMNeT++ called gates.

State machine diagrams are embedded in OMNeT++ simple modules. We do
not use the Finite State Machine (FSM) mechanism built into OMNeT++ be-
cause UML features such as history states or orthogonal states would have been
difficult to integrate with that mechanism. Instead, we base our translation of
UML state machines on the state design pattern. A translation of some features
of UML state machines into Java code using the state pattern has already been
described in [18]. We loosely lean on that approach, with a few differences.

The main difference is that in the state pattern, the firing of transitions is
delegated to the state objects. That is not the case in our implementation. In-
stead, we define a method for each state class that returns the currently enabled
transitions depending on the current state, trigger and guards. The collection of
enabled transitions is then evaluated at a central place, and the chosen transi-
tion is fired from there. The main advantage of this method is that the different
firing priorities as defined in the UML standard, as well as extra tie-breaking
rules, can be included a lot easier.

Figure 3 illustrates some of the features of UML state machines. Besides
regular, initial, and final states, our implementation includes shallow and deep
history states, nested states, orthogonal regions, joins and forks, junctions, and
choice vertices. The figure also helps to demonstrate some pitfalls that can be



met when modeling state machines. Most of these pitfalls are mentioned as
semantic variation points in the UML standard. The first issue is the question
of what happens if an enclosing state does not have an initial state. This is the
case with both regions contained in State1 in the figure. Another question is
what happens if several transitions are enabled at the same time. The standard
defines that those transitions that leave the state with the deepest nesting level
have the highest firing priority. In the figure, the transitions leaving State11
and State13 all have the same priority. If their triggers match and all guards
evaluate to true, the standard does not define which one will be taken. Syntony
currently chooses a random transition in this case, while a more sophisticated tie-
breaking algorithm (or even a choice from several algorithms) would be desirable.
Warnings or errors are created and shown in the Translation View if such a pitfall
is recognized during the transformation.

Example StateMachine

sleep

awake

State1

State11 State12

State13

State2 State3

H H*

some condition
else

Fig. 3. Example of a state machine diagram

The effects of transitions and the entry, do, and exit actions of states may
be specified in detail with activity diagrams.

All classes containing a composite structure diagram are translated to OM-
NeT++ complex modules. The parts contained in such a diagram are listed
in the submodules section of the resulting NED file. The ports of the class are
listed in the gates section, and the connections between class ports and ports on
contained parts are detailed in the connections section.

Unfortunately, a few semantic issues concerning composite structure dia-
grams are left open in the UML standard. One such issue is the question of the
exact connection topology for many-to-many connections. Possibilities to resolve
this issue include the star pattern (connecting each element with all elements
on the other side) and the array pattern (connecting the i-th element only with
the i-th element on the other side). Syntony currently uses the star pattern, but
outputs a warning message if this situation is encountered. Another problem
refers to the semantics of signal forwarding. Imagine a signal arrives via some



connection at one side of a port, and should be forwarded to the other side of
the port. What should happen if there are multiple connectors attached to that
side of the port? The signal could be forwarded on all connections, just one con-
nection, or a subset of the available connections. Syntony currently forwards the
signal on all connections, and also outputs a warning message.

Syntony includes a compiler for OAL statements. This compiler has been
written based on the EBNF production rules for OAL contained in [1] and the
SableCC parser generator [12]. The compiler translates the statements from OAL
to C++ and inserts them at the appropriate places in the C++ code generated
by Syntony. Error messages are attached to the Translation View if a statement
could not be translated.

4.4 Integrating existing simulation modules

The integration into an existing simulation framework inevitably raises the ques-
tion if models that are already existing in the simulator can somehow be re-used
in the context of our UML-driven simulations. The benefits of such a reuse are
basically the same as for the reuse of other software components. Models that
are already developed and tested need not be developed again. Models created
by other people can be integrated. Performance comparisons are facilitated.

For the integration of existing OMNeT++ modules into UML models, we
chose an approach that combines custom stereotypes with a model library rep-
resenting the existing modules. In the model library, all reusable modules are
represented by classes. The module parameters are attributes of these classes.
All attributes are given appropriate default values. Elements from the model
library can then be used in the context of a UML model by using them as parts
in composite structure diagrams.

For the transformation into simulation code, two stereotypes have to be ap-
plied to the classes and their attributes. The <<simulationModule>> stereotype
used for classed has one tag value which contains the OMNeT++ name of the
module. During the transformation, parts that are stereotyped in this way are
replaced by the corresponding OMNeT++ modules. Additionally, the module
parameters have to be stereotyped as <<simulationParameter>>. This stereo-
type has several effects. For one, the corresponding attributes are placed in the
OMNeT++ initialization file and can then be varied without recompiling the
simulation. Second, the stereotype has tags that indicate how the stereotyped
parameter should be varied systematically during the simulation runs.

5 Case study: Cooperative Cars

In order to further outline the capabilities of Syntony and to demonstrate the
general feasibility of our approach, we created a model of the communications
within the the AKTIV project CoCar in UML. Based on this model, selected
details of the UML modeling process are outlined.



Project Cooperative Cars describes itself as follows [2]: The CoCar project is
aiming at basic research for Car-to-Car (C2C) and Car-to-Infrastructure (C2I)
communication for future cooperative vehicle applications using cellular mo-
bile communication technologies. Five partners out of the telecommunications-
and automotive industry develop platform independent communication protocols
and innovative system components. They will be prototyped, implemented and
validated in selected applications. Innovation perspectives and potential future
network enhancements of cellular systems for supporting cooperative, intelligent
vehicles will be identified and demonstrated. In a first step, potential application
scenarios will be specified, data flows and information content analyzed, com-
munication requirements of cellular C2C and C2I applications identified. Traffic
and communication models will be worked out. A network load and latency
simulator will be developed. The simulator behavior will be verified against a
broad spectrum of telematics applications and related communication models.
The simulation results will constitute the foundations for consecutive technical
feasibility studies. The results shall also identify upcoming demands for cellular
network evolutions. Extensible multi-party vehicular application protocols for
global deployments will be worked out and evaluated in scope of the project.

Fig. 4. State machine diagram for the Reflector component

The UML model we created represents a very early stage of the operations
envisioned in the CoCar project. The behavior of all components is modeled with
state machine diagrams. The state machine of one component, the Reflector, is
shown in Figure 4. Also modeled in the simulated system are other network
infrastructure components, as well as cars that communicate wirelessly via an
air channel. The structure of the entire system is shown in Figure 5.

From this UML model, Syntony generates about 3000 lines of C++ code.
While there are some redundancies in the code generated by Syntony and al-
though this number also includes many debug statements (automatically gen-
erated from the names of states and actions), as well as statistical counters, it



is probably safe to say that a UML model (even a complex one) is easier to
maintain and understand than several thousand lines of arbitrary code.

Fig. 5. The CoCar system

Fig. 6. Simulation model running in
OMNeT++
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Fig. 7. Performance measures collected
during the CoCar simulation

The translated code can then be directly compiled and executed as a model
of the OMNeT++ simulation environment. A screenshot of the simulation exe-
cution is depicted in Figure 6. Using Syntony and OMNeT++, the UML model
can thus be automatically simulated and typical measures such as the number
of transmitted messages and other performance measures, depicted in Figure 7,
can be collected.

6 Conclusion and future work

We demonstrated Syntony, an Eclipse-based tool for the automated translation
of UML 2 models into executable simulation code. We also motivated the need



for standardized modeling languages for doing so and the choice of UML 2 dia-
grams that fulfill our requirements to a certain extent. Additional features can
be modeled (and executed by Syntony) using profiles that allow to incorporate
non-functional properties of the system, and by annotating modeled actions with
OAL or C++ code. The usability of the tool chain has been verified by the devel-
opment of a UML 2 model of the CoCar project’s communication architecture.

This demonstrates that Syntony is well suited for large applications: it is
flexible, easy to use, and can handle complex modeling tasks. As a consequence,
existing UML tools can be used for the description of a complex simulation
model. It is therefore possible to integrate simulation seamlessly in the system
design process.

In conclusion, it can be said that Syntony supports very convenient graphical
modeling and programming paradigms while achieving both similar accuracy and
simulation performance compared to native models.

In future work, we plan to integrate the modeling facilities provided by the
MARTE profile as soon as its standardization is finished. In particular, this will
include the modeling of stochastic timing and probabilistic choices. Resolving
the open semantic issues in this context will also be a part of our work.

We are also working on a standard-compliant action language as a replace-
ment for the combination of OAL and C++ to increase the flexibility of the
developed models. The integration of other simulation cores is planned as well.

In addition, we plan to extend the functional range of Syntony by adding
facilities for the animation of the simulation execution, as well as a component
for the integrated evaluation and presentation of simulation results. The inclusion
of a component for statistical testing is also intended.
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